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About the Patient-Generated Hypotheses Journal

Welcome to the Patient-Led Research Collaborative’s first issue of the Patient-Generated Hypotheses
Journal. This issue is a compilation of six hypotheses plus poll results. People with Long COVID and
associated conditions and caregivers of people with these conditions developed, wrote, chose, and
edited this issue.

Historically, biomedical research has prioritized hypotheses developed by researchers without lived
experience of the conditions they study. People with lived experience who have hypotheses about the
mechanisms of their conditions did not have a platform to share their hypotheses, except for within
patient communities.

Centering patient expertise
At the Patient-Led Research Collaborative (PLRC), we have put patients in the driver’s seat of research since April
2020. We centered patients in sourcing hypotheses for Long COVID in the development of our own surveys1, in
choosing what research to fund2, and in setting a new baseline for meaningful patient engagement3. We know that
patients are the foremost experts on their own bodies. We also know that many patients are immersed in research
in areas that the majority of the medical community has yet to explore.

The authors of this issue are from diverse professional and academic backgrounds, ranging from self-taught to
Ph.D. One of the goals of our Patient-Generated Hypotheses Journal is to highlight the immense talent pool of our
patient network, from their backgrounds, their lived experience of being a patient or caregiver, and from their
ability to synthesize existing research and align it with their own hypotheses. Additionally, patients and caregivers
are often communicating with each other online, discussing symptoms, experiences, lab results, and the reactions
to various medications they are trying. This pattern recognition is invaluable and regularly results in patients
identifying discoveries well before the public and the medical community.
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Structure and aims of the journal

We have seen first-hand that patient-led research is more effective, timely, accessible, and representative, in
addition to prioritizing topics that are most important to the patient community. With that in mind, PLRC
developed the Patient-Generated Hypotheses Journal. First, we created a panel of patient-researchers with lived
experience of Long COVID, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and other associated
conditions4. Then we created the process outlined in Figure 1. The process includes determining criteria and
format of hypotheses, crowdsourcing submissions, selecting based on strength of evidence, reviewing and editing
chosen hypotheses, assembling into this publication, and submitting to an open science journal.

Figure 1. Patient-Generated Hypotheses Process

Each hypothesis has an abstract that gives an easy-to-read summary, followed by the in-depth hypothesis with
supporting evidence. Most of the entries also provide instructions for how to test the hypothesis, and all highlight
unanswered questions.

The hope is for biomedical researchers to use these hypotheses as inspiration for their research, to partner with
the author and other patients/caregivers in testing the hypothesis, and to uplift patient-generated hypotheses as a
credible source of research generation.

By giving the patient community a platform and voice in the research process, we anticipate new discoveries and
better outcomes for people with chronic illnesses.

1McCorkell, L., Assaf, G. S., Davis, H. M., Wei, H., & Akrami, A. (2021). Patient-Led Research Collaborative: Embedding patients in
the Long COVID narrative. Pain Reports, 6(1), e913. https://doi.org/10.1097/pr9.0000000000000913
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2Patient-Led Research Collaborative. (2022). Patient-Led Research Fund.
https://patientresearchcovid19.com/projects/patient-led-research-fund/

3Council of Medical Specialty Societies. (2023, February 15). The Promise of Patient-Led Research Integration into Clinical Registries
and Research - CMSS. CMSS. https://cmss.org/patient-led-research-integration/

4Patient-Led Research Collaborative. (2022). Patient-Generated Research Hypotheses.
https://patientresearchcovid19.com/projects/patient-generated-research-hypotheses/
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Hypothesis

Long COVID brain fog is caused by free glycan sugar
chains in the brain
Angela May O’Connor, Ph.D. 1
1 Independent Patient-Researcher

Abstract

Coronavirus spike proteins are composed of glycoproteins, molecules that have a protein center and sugar
side-chains. These coronavirus glycans interact with other protein-sugar molecules present on the outer surface of
cells, known as the glycocalyx. Coronavirus spike proteins particularly interact with the glycocalyx within blood
vessels, causing these protein-sugars to peel off the internal walls of blood vessels. Previous work has shown that
during sepsis, protein-sugar molecules similarly slough off the internal walls of blood vessels, cross the blood-brain
barrier and contribute to cognitive, memory, and mood disorders. This proposal hypothesizes that viral persistence
and constant coronavirus spike protein presence in the bloodstream of Long COVID patients similarly causes an
ongoing degradation of endothelial glycocalyx, resulting in free floating glycan sugar side-chains that contribute to
the cognitive issues observed in this condition.

Introduction

Proteoglycans are a broad group of molecules,
comprised of a core protein surrounded by sugar
side-chains that are composed of differentially
sulphated groups of glycosaminoglycans (GAG); both
the core protein and sugar chains determine binding
affinity and functionality of a proteoglycan1,2. The
spike proteins found on the external surface of
SARS-CoV-2, the virus that causes COVID-19, are
glycoproteins, also composed of a protein core and
sugar side-chains3-5. During normal function, sugar

side-chains are constrained to their core proteins
and do not interfere with normal biological
processes; however, free glycan side-chains can
damage various tissues, such as during sepsis6-8.

These glycan fragments are small enough to pass the
blood-brain barrier, resulting in impaired memory
and cognitive functions both during and after sepsis,
thought to be due to the presence of free glycan
side-chains within the brain6,7. The SARS-CoV-2
proteoglycan spike protein is known to persistently
circulate in patients with Long COVID10, and is known
to both cross and disrupt the function of the
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blood-brain barrier11-13. This proposal addresses the
possibility that freely circulating, persistent
SARS-CoV-2 spike protein is a major contributor to
the cognitive and memory deficits experienced by
patients with Long COVID.

Hypothesis

Proteoglycans play many different roles in cellular
and biological processes, particularly heparan sulfate
proteoglycans (HSPGs)2 like those thought to act as a
co-receptor for the SARS-CoV-2 virus3-5. HSPGs
mediate growth factor signaling, provide guidance
during cellular migration and axonal growth within
the brain, organize the extracellular matrix, enable
cellular motility and adhesion, and facilitate
virus-host interactions among other cell-cell
crosstalk2. HSPGs may be secreted into and
participate in the extracellular matrix, form
intracellular secretory vesicles, or be bound to
cellular membranes2, where they act as co-receptors
for various growth factors, proteins and the
SARS-CoV-2 virus3-5.

Proteoglycans and glycoproteins within the brain
regulate neuronal health, form chemical gradients
that guide cellular migration during development,
provide cellular support, enable synaptic
connections, regulate the availability and signaling of
growth factors, and close off critical periods by
helping to solidify mature neural networks2, 14-18. It
has been seen that altering proteoglycans within the
rodent brain results in altered behavior19-21 and
neural function22,23.

Recent work has established the presence of
free-floating SARS-CoV-2 spike protein within the
blood of Long COVID patients8. It is hypothesized
that viral persistence within patients results in a
variety of immunological, neurological, and
autonomic dysregulation, while also providing a
constant supply of the spike glycoprotein. The
presence of freely circulating glycans has also been
detected, and significantly contributes to
pathophysiology during sepsis6,7. Like Long COVID,
sepsis is a multi-organ, multi-system inflammatory
process where normal cellular activity is disrupted or
completely breaks down, and the two have been
compared as having similar long-term sequelae35.
Proteoglycans and glycoproteins that are sloughed
off blood vessel endothelia during sepsis are capable
of crossing the blood-brain barrier, and are thought
to contribute to the ongoing cognitive and
neurological issues seen in post-sepsis syndrome6-9.
Similarly, the free floating spike protein found in the
blood of Long COVID patients is also capable of
crossing the blood-brain barrier12,13, and high levels
of HSPGs have been found in the blood of COVID-19
patients due to endothelial glycocalyx disruption3.
What is not known is whether the presence of these
glycans in the brain contributes to the cognitive and
neurological issues seen in Long COVID, similar to
the effect observed in septic and post-septic
patients.

This proposal puts forward the hypothesis that the
circulating SARS-CoV-2 spike protein found in Long
COVID patients crosses the blood-brain barrier and
interferes with normal neuronal and cellular
functioning within the brain, contributing to the
brain fog, speech impediments, memory issues,
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cognitive impairments, and other neurological
disorders observed in patients with Long COVID.

How to test the hypothesis

Assessing patient tissue

● Assess proteoglycan and glycoprotein sugar
side-chain recovery from post-mortem tissue
taken from the brains of severe acute
COVID-19 patients. Recover glycan chains and
perform liquid chromatography mass
spectrometry using established techniques7 to
assess the presence of the SARS-CoV-2 spike
protein or free-floating HSPG sugar
side-chains within various brain regions.

● Correlate circulating glycan levels with brain
glycan measurements and
behavioral/cognitive performance to
determine how free floating SARS-CoV-2 spike
protein and elevated HSPG blood levels
correlate with impaired cognitive capabilities.

Assessing animal studies

● Use an established Long COVID animal model
such as that published by Frere et al. (2022)30.
Compare behavioral performance in the
Puzzle-Box to assess cognitive capabilities29

across a Long COVID animal model, sepsis
animal model, and possibly animal model with
disturbed brain glycans (i.e. chondroitinase

and heparinase injections into the
hippocampus).

● Fresh frozen brains from the above animals:
recover glycan chains and perform liquid
chromatography mass spectrometry7 to
assess the presence of the SARS-CoV-2 spike
protein and free-floating HSPG sugar.
side-chains within various brain regions. Stain
brain samples for 3G10 and 10EF to assess
the presence of broken/free floating
proteoglycan side-chains versus
bound/complete side-chains27, and for
perineuronal nets using wisteria floribunda
agglutinin (WFA) to assess the state of the
glycans within the brain extracellular matrix28.

● Collect trunk blood at sac: process for the
presence of free floating proteoglycans and
glycoproteins, including the SARS-CoV-2 spike
protein.

● Correlate circulating glycan levels with brain
glycan measurements and behavioral
performance to determine how much free
floating glycans, including the SARS-CoV-2
spike protein, contribute to impaired cognitive
capabilities.

Potential therapeutics

● Nattokinase to dissolve persistent circulating
SARS-CoV-2 spike protein31

● Synthetic heparan sulfate mimetics to disrupt
glycocalyx degradation caused by persistent
SARS-CoV-2 spike protein32

● Drugs used to restore endothelial functioning
in diabetes treatment33,34
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Unanswered questions

1. Do Long COVID patients have ongoing endothelial
glycocalyx degradation similar to that observed in
acute COVID patients?

2. What neurological or cognitive impacts do the
free-floating SARS-CoV-2 spike protein glycans have
in patients with Long COVID?

3. How can we measure or determine this?

4. What are some ways in which we can eliminate the
free floating glycans from Long COVID patients’
tissues, particularly within the brain?
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damaged in diabetic cardiomyopathy: Angiopoietin 1 restores glycocalyx and improves diastolic function in mice.
Diabetologia, 65(5), 879–894. https://doi.org/10.1007/s00125-022-05650-4

35 Sepsis Alliance. (2022, June 29). Post-Sepsis Syndrome: Sepsis Alliance.
https://www.sepsis.org/sepsis-basics/post-sepsis-syndrome/
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Hypothesis

Symptomatic myodesopsia/vitreous floaters may
constitute a risk factor for Long COVID and ME/CFS
Matt Mazewski, Ph.D. 1
1Myodesopsia International

Abstract

The ophthalmological condition known as myodesopsia or vitreous floaters results from aggregates of proteins or
cellular debris in the vitreous body casting shadows onto the retina that are perceived as objects moving through
the visual field. While this is commonly viewed as a benign condition associated with aging, a growing body of
research suggests that for some patients it can severely impact visual function and quality of life. Myodesopsia is
often caused by posterior vitreous detachment, but can also result from other conditions such as asteroid hyalosis,
uveitis, or myopic vitreopathy. There are strong reasons to suspect that its presence may be indicative of a
susceptibility to collagen degradation in response to inflammatory triggers, which may represent a risk factor for
the development of Long COVID, ME/CFS, or related chronic illnesses. Evidence for such susceptibility includes the
presence of collagen-degrading enzymes in the vitreous, associations with other connective tissue disorders, and
links between myodesopsia and infections with various pathogens.

Introduction

Myodesopsia, also known as vitreous floaters or “eye
floaters,” is an ophthalmological condition in which
aggregations of proteins or other cellular debris
within the vitreous body, the normally transparent
gel that occupies the space between the retina and
lens, cast shadows onto the retina that are perceived
as objects moving through the visual field1. Clinicians

have traditionally viewed myodesopsia as a common
and mostly benign phenomenon associated with
normal aging that only causes significant disability or
morbidity very rarely, if at all2. A growing body of
research has shown, however, that for a subset of
patients the impact on visual function and quality of
life can be severe3,4,5,6.
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In older adults, the leading cause of myodesopsia is
an age-related development known as posterior
vitreous detachment (PVD), which occurs when the
vitreous undergoes collapse and detaches from the
retina due to progressive liquefaction of its gel
structure. Symptomatic floaters are often found in
younger individuals as well though, even if their
exact prevalence has not been established. In
patients without PVD, floaters may result from
conditions such as asteroid hyalosis, uveitis, or, more
commonly, myopic vitreopathy7.

Although the precise etiological mechanisms behind
myodesopsia in many instances remain unknown -
and the condition is often therefore deemed
“idiopathic”—there are strong reasons to suspect
that such cases may be indicative of a susceptibility
to collagen degradation in response to inflammatory
triggers. This in turn may represent a risk factor for
the development of Long COVID, myalgic
encephalomyelitis/chronic fatigue syndrome
(ME/CFS), or related chronic illnesses. There is
evidence that collagen breakdown may be a
significant factor in these diseases insofar as it is a
correlate of damage to structurally important
connective tissues, such as the ligaments of the
craniocervical junction8.

Hypothesis

We review here three reasons why floaters may be a
sign of vulnerability to such breakdown.

First, collagen-degrading enzymes are present in
human vitreous and are likely involved in structural

changes thereto. The vitreous is an extracellular
matrix (ECM) that consists of roughly 98% water and
2% structural macromolecules, chief among them
hyaluronan and collagen (including types II, IX, and a
hybrid of types V and XI)7. It also contains varying
concentrations of matrix metalloproteinases (MMPs),
proteolytic enzymes that are believed to play a role
in age-related vitreous liquefaction9. These include
MMP-1 (interstitial collagenase), MMP-2 (gelatinase
A), MMP-3 (stromelysin-1), and MMP-9 (gelatinase
B)10. Indeed, pharmacological inhibitors of MMP
activity have been proposed as candidates for
prophylaxis of vision-degrading myodesopsia7. An
implication is that symptomatic floaters in younger
patients could be evidence of a
greater-than-ordinary propensity to MMP
upregulation and collagen breakdown, including in
response to infection.

Second, myodesopsia has been identified as a
comorbidity in other connective tissue disorders,
some of which themselves potentially increase risk
for the development of Long COVID and ME/CFS11.
Sebag (2014) describes known associations with
Marfan syndrome and Ehlers-Danlos syndrome
(EDS)12. Milhorat et al. (1999) note that “floaters or
flashing lights” were reported by 200 out of 364
patients (54.9%) with a diagnosis of Chiari I
malformation or syringomyelia13. (To put this figure
in context, one 2021 survey of ophthalmologists and
optometrists found that “only” between 17% and
32% of all patients reporting to the typical clinic for
an ocular examination have some amount of
symptomatic floaters14.) In a 2013 lecture on cervical
medullary syndrome, which involves structural
compression of the brainstem, Dr. Roger Kula
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explicitly hypothesized that the high prevalence of
floaters in this patient population was due to a
correspondingly high predisposition for connective
tissue disorders (see at 17:00 in the cited
recording)15.

Third, there are known links between myodesopsia
and infection with various pathogens, such as
Borrelia16, Bartonella17, and Toxoplasma18,
suggesting that the presence of floaters may be
evidence of a prior collagen-degrading infectious
process even when a specific causative agent cannot
be identified. Floaters have already been highlighted
in the literature as a possible ocular sequela of
COVID-19 itself19, and online forums and support
groups for myodesopsia sufferers are now filled with
anecdotal reports of onset following SARS-CoV-2
infection or even COVID vaccination(see the
appendix for a sampling of recent anonymized
reports of floater onset following SARS-CoV-2
infection or vaccination from the Reddit
communities r/CovidLongHaulers and r/EyeFloaters,
which currently have over 45,000 and 6,000
members, respectively)20,21.

How to test the hypothesis

Testing this hypothesis would ideally entail
conducting a well-powered prospective longitudinal
study in which individuals with and without
symptomatic myodesopsia would be followed for a
period of time so that the incidence of Long COVID
or ME/CFS in both groups could be ascertained. For
study purposes, a diagnostic definition of
myodesopsia should be adopted that incorporates
both patients’ own symptom reports as well as
objective clinical indicators like contrast sensitivity
function and vitreous echodensity as measured by
quantitative ultrasound22. If the hypothesis is correct,
it would suggest that a relatively simple ocular
screening might be a cost-effective way of identifying
at least one subset of patients at higher risk for
these serious conditions. It would also provide an
additional rationale for performing genetic studies
aimed at uncovering as yet unknown mutations
associated with a tendency to developing them,
which could in the future enable a more targeted
approach to prevention of myodesopsia as well as of
various complex chronic illnesses.
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Appendix: Anonymized anecdotal reports of myodesopsia onset
following SARS-CoV-2 infection or COVID vaccination from online
communities

Figure 1. Poll from the Reddit community r/EyeFloaters on the relationship between COVID and developing eye floaters.
Source: https://www.reddit.com/r/EyeFloaters/comments/qhtek3/do_you_believe_covid19_has_some_relation_to/
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Figure 2.1, 2.2. Post from the Reddit community r/covidlonghaulers on eye floaters after COVID. Source:
https://www.reddit.com/r/covidlonghaulers/comments/zt6nc4/eye_floaters/

Figure 3.1, 3.2. Post from the Reddit community r/EyeFloaters on COVID Correlation. Source:
https://www.reddit.com/r/EyeFloaters/comments/1068b8v/covid_correlation/
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Figure 4. Post from the Reddit community r/EyeFloaters on floaters after COVID vaccine. Source:
https://www.reddit.com/r/EyeFloaters/comments/pl013m/floaters_after_covid_vaccine/
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Hypothesis

Matrix metalloproteinase inhibition with low-dose
doxycycline in Long COVID and ME/CFS
Erin C. Sanders, MSN, WHNP-BC [1,2]

1 Nurse Practitioner
2Clinical Scientist at MIT

Abstract

Nonselective matrix metalloproteinase (MMP) inhibition with FDA approved subantimicrobial dose doxycycline
formulations could improve systemic symptoms in at least a subset of patients with Long COVID and myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) as compared to those who receive placebo.

Hypothesis
The chronic inflammatory state induced by Long
COVID and myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS) likely increases systemic
collagenase activity, causing pathologic collagen
breakdown and loss of tissue structural support. A
cascade of symptomatology across organ systems
could follow, including those stemming from
increased tissue laxity and distention, as well as
increased permeability of important tight junctions
in mucosal barriers1, 2, vasculature3 and the
blood-brain barrier4, 5. Existing subantimicrobial or
low-dose doxycycline (LDD) formulations with
established efficacy to inhibit matrix
metalloproteinase (MMP) activity are worth exploring
to stabilize symptoms in parallel to the development

and trial of other therapeutics.

MMPs have been found to be elevated in patients
with various infections and chronic illnesses6, 7. A
recent study also showed that MMP-9 produced
from cancer cells was able to induce remodeling of
capillary endothelial cells and support early brain
metastasis8. Similarly, studying the biomechanics of
neuroinvasive pathogens that cause infectious
diseases like COVID-19 and Lyme may help us better
understand transport across the blood-brain barrier,
seeding of infection, and persistence into the central
nervous system (CNS)9, 10. Due to its ability to cross
the blood-brain barrier, doxycycline has long been
used as standard of care to treat Lyme disease,
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including facial palsy, meningitis, or radiculoneuritis
from neuroborreliosis in both adults and children11.
Doxycycline has shown the ability to reduce
neuroinflammation12, 13, which is a leading hypothesis
for the widespread neuropsychological symptoms
observed in patients with Long COVID14-16 and to a
lesser extent in ME/CFS17. More generally, in
addition to their antibiotic mechanism of action, the
tetracycline class of antibiotics can induce
immunomodulatory and anti-inflammatory activity in
patients with autoimmune diseases18. Enzymes like
MMPs that are secreted to degrade connective tissue
are triggered by immune cell signaling, but are also a
part of a feedback loop where subsequent tissue
damage or breakdown provokes additional immune
responses19. Immunomodulating therapies like LDD
that inhibit MMPs have the potential to disrupt this
inflammatory cycle, which may allow the tissues to
heal. Despite the first tetracycline being discovered
in 1948, the use of doxycycline for non-antibiotic
indications has not been widely adopted in clinical
practice20. Currently, only two LDD formulations have
FDA approval with indications of periodontal disease
(Periostat®21) and rosacea/acne (Oracea®22), granted
in 200123 and 200624, respectively. For decades, many
synthetic MMP inhibitors have shown remarkable
potential in vivo and in vitro, but their translation
into advanced clinical trials has largely failed due to
musculoskeletal toxicity or lack of efficacy25-27.
Fascinatingly, what has helped make doxycycline a
clinically useful MMP inhibition therapy is its
incomplete blockade, causing side effects to be less
profound and overall more tolerable28.

If chronic immune activation is contributing to
endothelial dysfunction29, 30, hypercoagulability, and

fibrinaloid microclot formation31, 32 already observed
in patients with both Long COVID and ME/CFS, could
it also compromise connective tissue integrity and
the structural stability of critical joints that protect
the nervous system? This process may partially
explain why many patients receive comorbid
diagnoses like mast cell activation syndrome
(MCAS)33, 34 and hypermobile Ehlers Danlos
Syndrome (hEDS)35, 36. In fact, when researchers took
the skin cells of patients with hEDS and treated them
with doxycycline in vitro, the antibiotic restored
extracellular matrix organization and significantly
attenuated myofibroblast-like features37. This work
shows that the cellular structural changes in hEDS
have the potential to be reversible, and that
doxycycline can modulate at least a part of that
process. Growing literature is revealing the complex
interplay of the extracellular matrix and the immune
system19, which may help to explain the overlap of
connective tissue disorders like hEDS with Long
COVID and ME/CFS. Importantly, treatment with LDD
does not preclude the use of other medications
utilized in tandem to help control chronic
inflammatory responses like dual antihistamine
blockade with or without mast cell stabilization to
help prevent further tissue breakdown and aid in
tissue repair38. Furthermore, clinical trials have
shown LDD can be safely taken for up to two years in
a population of postmenopausal women39.

Sex differences in fluctuation of MMPs due to the
cyclical tissue breakdown required for
menstruation40-42 should be given close
consideration, as many chronic illnesses, including
Long COVID and ME/CFS, disproportionately impact
females. Progesterone downregulates MMPs and
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can either trigger or prohibit the sloughing of the
endometrium to support a pregnancy40. Anecdotally,
Long COVID and/or ME/CFS patients who menstruate
have reported significant symptom fluctuation
throughout their menstrual cycles, in addition to
bleeding pattern changes after a COVID-19
infection43 and even COVID-19 vaccination44-46.
Dysregulation of MMPs has also been implicated in
uterine pathologies like endometriosis40-42. The
impact of menstruation or illness on systemic
collagenase activity and chronic symptoms is largely
unexplored. Sex differences in MMPs raise the
important question of whether the biologically
conserved process of menstruation that is necessary
for perpetuating the human species also comes at a
cost associated with a higher risk for systemic barrier
permeability or pathogen translocation. Namely, do
the sex differences in MMPs required for the cyclical
tissue breakdown of the endometrium put
menstruating people at a higher risk for infection,
disease, or cyclical symptom exacerbation?

How to test the hypothesis

Testing the main hypothesis in patients with Long
COVID and/or ME/CFS would require a Phase 3
double-blind, placebo-controlled, randomized trial of
participants in 4 potential treatment arms, including
the two FDA approved low-dose options that could
be considered for expanded use.

1) Doxycycline (Oracea®) 40 mg capsule per oral
route once daily

2) Doxycycline hyclate (Periostat®) 20 mg tablet
per oral route twice a day

3/4) Matching placebo of each

Investigators should assess for symptoms before
and after treatment with validated questionnaires,
physical assessment, and lab measurements of
MMP-9 (Labcorp has a commercially available
assay)42, plus other objective metrics of common
symptoms, such as the NASA lean test for autonomic
dysfunction43, the Beighton Score for
hypermobility44, CNS Vital Signs45 or BrainCheck46 for
cognitive impairment, and abbreviated Depaul
Symptom Questionnaires (DSQ-SF47 or DSQ-PEM48)
for post-exertional malaise. For a chronic illness with
no existing cure, another important question is how
long a patient can take these therapies safely.
Therefore, treatment duration should be at least 6
months with potential for crossover design
extending to 1 year. Additionally, by using data and
frozen blood samples collected from existing funded
and IRB approved research like the MIT MAESTRO
Study, baseline levels of MMPs in a chronic illness
population could be assessed in acute Lyme disease,
Long Lyme, and Long COVID, compared to healthy
controls. Participants could be followed to pair
additional blood samples timed prior to or during
menstruation. Menstruation is a complex and
modifiable variable that can influence both chronic
disease state and treatment response. However, this
variable also suggests that hormone modulation or
suppression of menstruation could potentially help
some patients.

No FDA approved treatments for Long COVID or
ME/CFS currently exist. Access to off-label therapies
continues to be a significant barrier for patients who
are suffering. Urgent funding must be prioritized to
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study multi-pronged treatment regimens, including
repurposed drugs with established safety profiles.
LDD holds unique promise to aid in tissue repair by
interfering with a pathologic immune response,
while not causing immune suppression, which is a

primary concern in patient populations with
established latent infections and diseases caused by
pathogens capable of persistence.
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Hypothesis

Could vascular damage caused by massive
inflammatory events underlie a relapse/recovery
phenotype of ME/CFS and Long COVID?
Jeffrey Lubell 1
1 Independent Patient-Researcher

Abstract

I hypothesize that there is a relapse/recovery type of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)
and Long COVID in which a massive inflammatory event—like the inflammatory cascade prompted by the
restoration of blood flow (reperfusion) to tissue that had been deprived of blood (ischemia) or an allergic or
pseudoallergic reaction—causes substantial damage to blood vessels, launching a more severe phase of ME/CFS.
People with Ehlers-Danlos syndrome and other connective tissue disorders may be at particular risk of this
phenotype due to having connective tissue (a key component of blood vessels) that is more easily and severely
injured during inflammatory events and slower to heal, causing a much longer recovery.

Hypothesis
My daughter has experienced two major “relapse
events” in the five years of her myalgic
encephalomyelitis/chronic fatigue syndrome
(ME/CFS) illness. The active phase of the first event,
in October 2017, lasted only 15 minutes, but left her
so weak she could barely walk. The active phase of
the second event, in July 2020, lasted about two
hours, and initiated a period of very severe disease.

Both events were biphasic, with an initial period of
feeling very hot (and in one case red all over)
followed, several hours later, by whole body
shaking/chills and, during the second episode,
electric-like zaps and wave-like cascades up her
torso.

In my daughter’s experience, these baseline-lowering
events are distinct phenomena from day-to-day
post-exertional malaise. Unlike the symptoms of
post-exertional malaise, which are very impactful but
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temporary, the relapse events led to major
degradations in her condition that have persisted for
many months. In the two and half years since the
last relapse event, my daughter has made
substantial progress toward recovery, but still has
not yet regained her June 2020 level of functioning.

As I have worked to better understand my daughter’s
various interrelated chronic conditions—which
include ME/CFS, hypermobile Ehlers-Danlos
syndrome, craniocervical instability, Chiari
malformation, tethered cord syndrome, and
suspected mast cell activation syndrome—I have
connected with many other individuals that have
experienced a similar relapse/recovery pattern to
their illness. Despite this lived experience, there is
very little focus on this pattern in the existing
research literature on ME/CFS and Long COVID. A
notable exception is a recent preprint that
documents epigenetic changes that occur following
relapses in two patients with ME/CFS1 and a
subsequent paper that incorporates this analysis
into a model of chronic neuroinflammation in
ME/CFS2.

Drawing on my daughter’s experience and a review
of the research literature, I hypothesize that there is
a relapse/recovery phenotype of ME/CFS and Long
COVID in which susceptible individuals experience
massive “relapse events” that cause substantial
vascular damage, launching a more severe phase of
ME/CFS or Long COVID. Since many of the most
prominent symptoms experienced by people with
ME/CFS and ME/CFS-type presentations of Long
COVID are systemic, the vascular injury is most likely
caused by a systemic inflammatory process. I

propose that the inflammatory events can be
triggered through a range of different mechanisms,
including thrombotic events that lead to
ischemia/reperfusion injury, anaphylactic or
anaphylactoid mast cell activations, or the
inflammatory cascade of an acute infection.

Ischemia-reperfusion injury is one likely cause of
systemic vascular injury given the heightened risk of
thrombotic events after even mild cases of
COVID-193 or other viruses,4 and the triggering of
powerful and often injurious inflammatory processes
during reperfusion, including “TLR-mediated
pathways, chemoattractants, the complement
cascade,” and reactive oxygen species (ROS)5. Kell
and Pretorius have written about the possibility that
ischemia-reperfusion injury plays an important role
in Long COVID and ME/CFS6. An alternative pathway
for vascular injury is mast cell activation during an
anaphylactic or anaphylactoid event in response to a
pharmaceutical or chemical irritant, which similarly
involves the complement system and other powerful
inflammatory processes7,8. Vascular injury could also
result from a cytokine storm prompted by an acute
COVID-19 infection.

This hypothesis is consistent with a recent paper that
found evidence of a unique signature of vascular
transformation factors in people with Long COVID
associated with the process of repairing damaged
blood vessels9. It is also consistent with the findings
of endothelial dysfunction in people with ME/CFS
and Long COVID10,11. In a series of hypothesis
papers12,13, Wirth and Scheibenbogen (2021) and
Wirth and Scheibenbogen (2022) explore how
endothelial dysfunction, microvascular permeability,
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and the resulting leakage of protein-rich fluid can
give rise to many commonly reported ME/CFS
symptoms. However, their proposed mechanism
does not explain why some individuals experience
major relapses followed by periods of slow recovery.

I propose that the vascular hyperpermeability
(characterized by the excessive leakage of
protein-rich fluid from blood vessels) that prompts
many symptoms in ME/CFS—and likely, ME/CFS-type
presentations of Long COVID—can arise from several
additional mechanisms beyond the one noted by
Wirth and Scheibenbogen, including through direct
injury to the vascular endothelium14. A significant
vascular injury, prompting the degradation of an
individual’s condition and the start of a more severe
phase of illness, followed by the healing of that injury
over time, could help explain the relapse/recovery
pattern experienced by some individuals with
ME/CFS and Long COVID.

A study in Sweden of 229 individuals with ME/CFS
found that half had generalized joint hypermobility, a
marker of connective tissue disorders like
Ehlers-Danlos syndrome (EDS)15. Another study
similarly found a much higher rate of hypermobility
among people with ME/CFS and fibromyalgia than
among comparison households16. People with EDS
and other connective tissue disorders may be at
particular risk of this relapse/recovery phenotype
due to defective connective tissue that is more easily
and severely injured during inflammatory events. As
one researcher noted in a case study of recurrent
venous thrombosis in an individual with hypermobile
EDS, “In all types of EDS, the collagen that supports
blood vessels is unusually weak and elastic, making

blood vessels more prone to injury”17,18. People with
EDS similarly experience poor and delayed wound
healing19, which may explain the long length of the
recovery phase.

In people with a connective tissue disorder, the
connective tissue degradation initiated by the
inflammatory event can also cause or exacerbate
craniocervical instability and other spinal problems,
as well as vascular compression syndromes. These
complications could potentially cause additional
symptoms in affected individuals.

I would likewise expect that, even after healing,
susceptible individuals remain at risk of future
inflammatory events that could trigger another
relapse.

Unanswered questions
Could some massive inflammatory events stem from
vertebrobasilar ischemia or autonomic dysreflexia
secondary to the spinal complications of severe
hypermobility?

Is the lymphatic vasculature also injured in massive
inflammatory events, exacerbating symptoms during
the severe phase?

During the severe phase of a relapse/recovery
phenotype of ME/CFS and Long COVID, do chronic
inflammation and platelet activation slow recovery of
the vasculature by preventing healing and/or
exacerbating the injury?
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How does the relapse/recovery cycle relate to
microclots, autoantibodies, and other less cyclical

disease components; are they alternative
phenotypes, or do they coexist?
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Hypothesis

Astrocyte dysregulation of sympathetic nervous
system causes metabolic dysfunction in subset of Long
COVID and ME/CFS patients
Tamara Carnac 1

1 Independent Researcher

Abstract

An overactive sympathetic nervous system (SNS) may cause one subtype of Long COVID. People who are
genetically at risk for noradrenergic nerve problems may develop an overactive SNS after an infection.
Alternatively, genetic or virus-induced dysregulation of astrocytes could lead to overactivation of the SNS. An
overactive SNS could disrupt regulation of immune cells, energy metabolism, sleep homeostasis, respiratory rate,
gastrointestinal function, and systemic and cerebral blood pressure, causing fatigue and cognitive dysfunction.

Hypothesis
Long COVID refers to symptoms that continue for
more than four weeks after onset of acute COVID-19
illness. This umbrella term includes a wide variety of
symptoms and presentations. Long COVID patients
may have different types of biological dysfunction,
meaning that there may be distinct subtypes of Long
COVID. One possible subtype is sympathetic nervous
system (SNS) over-activation. This subtype may exist
in both Long COVID and myalgic
encephalomyelitis/chronic fatigue syndrome
(ME/CFS)1.

Underlying mechanisms of the SNS
overactivation subtype

Theoretically, patients with this subtype already have
a genetic dysregulation of neuronal norepinephrine
(NE) release/clearance or noradrenergic receptor
sensitivity2. This latent genetic dysfunction of NE
signaling may not cause significant problems unless
there is a trigger that causes excess NE release.
As NE affects immune cell signaling, this could result
in an over-activation or prolonged activation of the
immune system in response to infection with
SARS-CoV-2, the virus that causes COVID-193 . This
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subtype could explain why ME/CFS is often triggered
by a virus or brain injury, as these occurrences can
trigger noradrenergic signaling3.

Possible mechanisms for the SNS overactivation
subtype include viral reservoirs, antibody reaction,
and dysregulation of noradrenergic receptor
expression. In Long COVID patients, viral antigens
and reservoirs that remain in the body long after the
initial infection may keep the overactive immune
system in an inflammatory state4,5. A healthy person
may not react to these SARS-CoV-2 reservoirs, as
their functional immune cells should develop
immune tolerance. Another possibility is that the
immune system is reacting to SARS-CoV-2 antibodies.

Finally, it is possible that excess extracellular NE
could keep the SNS and noradrenergic systems in
the brain stuck in an overactive state. A prolonged
period of increased levels of extracellular NE could
lead to dysregulation of noradrenergic receptor
expression. The excess extracellular NE may be due
to a prolonged release of excess NE during the initial
infection, or a failure of the negative feedback
mechanisms that should reduce NE release.

Symptoms of an overactive SNS

An overactive SNS explains many of the symptoms
found in Long COVID patients, such as
IBS/gastrointestinal symptoms6, heart palpitations7,
and sleep disturbance8. Additionally, in orthostatic
intolerance, which is common in Long COVID and
ME/CFS, the release of NE causes pronounced

tachycardia. This rapid heart rate may cause
palpitations, breathlessness, and chest pain9.

Dysfunctional energy metabolism
causes fatigue and cognitive
dysfunction

An important piece of the puzzle is to explain how a
dysregulated SNS could lead to chronic fatigue and
brain fog (cognitive dysfunction). The most likely
explanation is a dysregulation of metabolic function.
There are many ways excess NE could affect
metabolism, including enhancing aerobic glycolysis
and depleting glycogen stores.

Excess NE or hypersensitive astrocyte
β2 adrenergic receptors deplete
glycogen stores

ME/CFS researchers have previously suggested that
ME/CFS patients have dysfunctional neuroglia in the
brain10. Astrocytes are a type of glial cell involved in
brain metabolism and the regulation of glutamate
and GABA. NE activation of β2 adrenergic receptors
(β2ARs) on astrocytes results in increased expression
of the glucose transporter GLUT1, leading to
increased glucose uptake, enhanced aerobic
glycolysis, and increased lactate production11.
Increased lactate levels have been found in the
brains of ME/CFS patients12.

In the brain, glycogen is primarily stored in
astrocytes, and glycogenolysis is activated by NE
acting on β2ARs. Increased NE levels could therefore
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lead to excessive glycogen depletion in astrocytes. It
is also possible that the β2ARs themselves are
oversensitive (not reducing their sensitivity in
response to excess NE levels) due to genetic
dysregulation13.

β2AR autoantibodies have been found in a subset of
ME/CFS patients, which could cause dysregulation of
astrocytic metabolism via β2ARs14. High levels of
CCL2/MCP1 have been found in ME/CFS patients and
CCL2/MCP1 can increase β2AR expression15,16.

An imbalance in astrocytes toward increased
glycolysis could lead to reductions in glycogen stores
in astrocytes. This could lower energy reserves,
leading to increased fatigue. Researchers have
proposed that brain glycogen decreases with
increased periods of wakefulness, and that a major
function of sleep is to replenish glycogen stores in
the brain17. Therefore, an inability to build up
glycogen stores in astrocytes could explain why
many ME/CFS patients wake up feeling unrefreshed
and tired18.

Excess NE release could also contribute to the
post-exertional malaise experienced by ME/CFS and
Long COVID patients after exercise. If patients start
with depleted glycogen stores, the increased NE
release during exercise would further deplete
glycogen stores.

Alternate subtype: Low
norepinephrine/desensitized β2
adrenergic receptors

It is possible that in some ME/CFS and Long COVID
patients, the biological mechanisms are the
opposite to what has been suggested in this paper19.
Reduced NE or reduced sensitivity of β2ARs could
also contribute to fatigue, via a reduction of
astrocytic glucose uptake, reduced glycogen
synthesis, and a decrease in the lactate supply to
neurons. This possibility aligns with research which
has suggested that ME/CFS patients can be split into
two groups with high and low NE plasma levels20.
Reduced astrocytic glucose uptake could lead to a
reliance on glutamine oxidation to maintain the
tricarboxylic acid cycle. Desensitized β2ARs on
immune cells could lead to an inability to switch
from the production of pro-inflammatory cytokines
such as tumor necrosis factor-α to
anti-inflammatory cytokines. Research has shown
that the capacity of monocyte β2ARs to regulate the
production of tumor necrosis factor-α is reduced in
ME/CFS patients21.

β2 adrenergic receptor dysfunction
throughout the body

Dysregulation of β2ARs could also cause excessive
vasoconstriction of the blood vessels,
bronchoconstriction of the lungs, reduced gut
peristalsis, and dysregulation of lipolysis and
thermogenesis in adipocytes. The β2AR also controls
glycogenolysis and gluconeogenesis in the liver,
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which could lead to depleted liver glycogen stores
and a reliance on noncarbohydrate metabolites. In
skeletal muscle β2ARs can control translocation of
GLUT4, which is normally triggered during exercise
in order to increase glucose uptake. A reduced
ability to translocate GLUT4 could lead to skeletal
muscle fatigue during exercise.

Astrocyte control of the sympathetic
nervous system

A further theory is that dysfunction of the β2ARs on
astrocytes could be solely responsible for causing
the symptoms of ME/CFS and Long COVID.
Astrocytes that reside alongside central nervous
system sympathetic control circuits can regulate
cerebral perfusion, systemic arterial blood pressure,
heart rate, respiratory rhythm-generating circuits,
sleep homeostasis, and glucose metabolism22-24.

Of particular interest is that astrocytes detect falling
cerebral perfusion pressure and activate
sympathetic control circuits in response. To counter

the dropped pressure, the sympathetic control
circuits increase heart rate and systemic arterial
blood pressure in order to maintain blood flow and
oxygen delivery to the brain. This mechanism
involves astrocytic calcium-dependent signaling
pathways25. Dysregulation of astrocytic calcium
signaling due to β2AR dysfunction could lead to an
inadequate or excessive SNS response when an
ME/CFS patient stands up. A dysregulated SNS
response could explain the postural orthostatic
tachycardia syndrome (POTS) symptoms of altered
heart rate and dizziness experienced by many
ME/CFS and Long COVID patients.

An initial overactivation of the SNS could dysregulate
astrocytes via adrenergic receptors, which in turn
could prevent the astrocytes from being able to
effectively control the SNS. Alternatively, genetic or
virus-induced dysfunction of astrocytes could be the
root cause of SNS dysfunction, an idea given weight
by the finding that SARS-CoV-2 is able to infect and
replicate in human cortical astrocytes26,27. Research
testing these hypotheses is needed in order to
better determine the mechanisms of Long COVID
and ME/CFS.
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Hypothesis

Increasing serum soluble CD40 ligand (sCD40L) may be
a biomarker of ME/CFS and chronic Long COVID
progression
Vijay Iyer, Ph.D.[1,2]
1 Independent Patient-Researcher
2Principal Neuroscience Specialist at MathWorks, Inc.

Abstract
To date, no single blood lab test exists to diagnose or track ME/CFS or chronic Long COVID. Based on existing
literature, this article brings together evidence that a molecule secreted by the immune system called sCD40L
tends to become increasingly elevated in ME/CFS, Long COVID, and Multiple Sclerosis. These studies, along with
what’s known about the role of sCD40L in health and other diseases, suggest sCD40L may be useful to track over
time in ME/CFS and Long COVID patients.

Hypothesis
Many studies into myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS) and Long COVID (LC)
have sought to identify serum or plasma biomarkers.
Most have focused on a single point in time, with a
growing number identifying multi-marker
“signatures” which can accurately classify patients
versus healthy controls1-3. Some studies have
investigated biomarkers at distinct time points with
respect to condition, such as before and after
exercise which is known to provoke ME symptoms4,5.

Few if any LC and/or ME/CFS biomarker studies have
been longitudinal, i.e., tracking the evolution of
candidate biomarkers in individual patients over
time.

One study from Hornig et al. (2015) explored
candidate biomarker time-evolution at the group
level, comparing plasma cytokine levels for ME/CFS
patient cohorts that were early (< 3 years) and later
(> 3 years) in their disease course6. They remarked
on one cytokine in particular: soluble CD40 ligand
(sCD40L) between the early and late stage ME/CFS
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patient cohorts, which showed a highly significant
progression (p<0.00001 via null hypothesis testing).

ME/CFS is often a post-viral illness7, and recently
further evidence has emerged for the progression of
sCD40L levels in other post-viral illnesses:

● Wu et al. (2021) reported on sCD40L as a
marker of progression in multiple sclerosis
(MS), with a clear increase between cohorts in
the earlier (relapsing-remitting) and later
(secondary progressive) forms of the disease8.
Recent evidence indicates MS also has a viral
trigger, specifically Epstein-Barr virus9.

● Patterson et al. studied sCD40L levels in
chronic Long COVID cohorts (with
predominantly ME/CFS-like symptoms),
reporting significant but modest sCD40L
elevation in an early study10 and a stronger
significant correspondence of sCD40L levels
to LC severity (across 4 of 5 symptom
questionnaires) in a later study11.

These studies each point to increasing sCD40L
correspondence with progression (time and/or
symptom), giving rise to the hypothesis that sCD40L
levels progressively increase on average during
the course of chronic Long COVID and ME/CFS.
Whereas Hornig et al. (2015) and Patterson et al.
(2021) found opposing effects at an early timepoint
for ME/CFS and LC, respectively, both showed
evidence for a progressive increase in sCD40L levels.
Such progression on average may give indications
about the disease mechanism(s), while such
progression individually may be an indicator of
disease presence and/or severity.

Soluble CD40 ligand (sCD40L), alternatively known as
CD154, is a mediator of CD40 receptor immune and
inflammatory responses ubiquitous across immune
cell types. The ligand form was originally found on
the surface of activated T-cells12. But more recently it
is recognized platelets are likely the largest source of
soluble (circulating) CD40L; and that sCD40L may in
turn be the most ubiquitous signaling molecule in
the platelet repertoire13,14.

The platelet origin of sCD40L may comport with
multiple findings of abnormal platelet activation for
LC and/or ME/CFS using various experimental
methods:

● Microscopic investigation of platelet-poor
plasma from a cohort (n=80) of LC patients
identified platelet hyperactivation as a
candidate sign15, with similar findings in a
report of a smaller cohort (n=25) of ME/CFS
patients16.

● Flow cytometry study of LC patients (n=24)
with confirmed cardiopulmonary exercise test
(CPET) findings found two markers of platelet
activation—P-selectin and platelet-leukocyte
aggregates (PLA)—persistently elevated at 6
months post-infection17.

● RNAseq study of ME/CFS patients (n=30)
found abnormally enriched gene sets for
platelets (but not other immune cells)
post-exercise18.

Beyond platelet activity dysfunction, several
suspected pathological pathways for LC and ME/CFS
have been linked to sCD40L signaling, including
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endothelial cell activation19, metabolism-associated
cell danger signaling via monocytes20,
pathogen-associated molecular pattern (PAMP)
activation of B-cell adaptive immunity21, and
neurocognitive impairment22.
Taken all together, sCD40L levels in LC and ME/CFS
appear to be a readily achievable (via blood sample)
and potentially fruitful longitudinal measurement,
which may serve as a progressive biomarker and/or
an indicator of underlying pathological mechanisms.

Given its progression appears in MS, one caveat is in
order: sCD40L is not apt to be a specific marker for

LC and/or ME/CFS. It has also been implicated as a
marker of cardiovascular disease including stroke23,24

and for several other neurological disorders
including Alzheimer’s disease25,26. Any studies of this
marker for LC and/or ME/CFS should be designed
and interpreted accordingly.
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Community polls

Informal social media polls: SARS-CoV-2 reinfection and
Long COVID, and the presence of new eye floaters in
Long COVID and ME/CFS
Patient-Led Research Collaborative

Abstract
Generating and sharing polls on social media is one way that patient communities can informally test their theories
and give researchers ideas about what to further explore. In February 2023, the Patient-Led Research Collaborative
conducted two sets of informal polls on Twitter and Mastodon. One question was about Long COVID and
reinfections, and the other asked about new eye floaters (myodesopsias) in patients with Long COVID and myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS). This brief article describes the results of each poll: 10.2% of
Twitter respondents and 20% of Mastodon respondents reported experiencing Long COVID after a reinfection,
rather than a first infection, and more than half of Twitter respondents with Long COVID or ME/CFS answered “Yes''
or “Maybe” that they noticed new eye floaters as a symptom. Both polls had limitations: Neither was intended to
establish incidence or prevalence data, and the poll respondents are likely not representative of the overall Long
COVID and ME/CFS communities. Despite this, the results provide potentially useful information for Long COVID
and ME/CFS research and policy.

Introduction
Social media has been widely used for health
purposes in the last decade, especially during the
ongoing COVID pandemic1. Many platforms are
important for patients and clinicians alike. A key
way that patients source information about their
illnesses or test their hypotheses among the patient
community is by creating and sharing polls on social

media. These polls come with limitations, however.
For example, Twitter polls are unlikely to reach a
broad sample audience, and the generalization of
their results is limited2. Additionally, polls on Twitter
are limited to four response options, and until very
recently, posts could only be a maximum of 280
characters. Polls on Mastodon face similar
constraints: For example, they also have only four
response options. Despite the limitations to the
conclusions one can draw from these polls, they
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reveal insights that can help patients and
researchers pursue hypotheses through more
formalized research avenues. In February 2023, the
Patient-Led Research Collaborative conducted two
sets of informal polls on Twitter and Mastodon.
Both sets of polls were anonymous: Twitter and
Mastodon do not reveal who participates in their
polls. We conducted these polls to test questions of
importance to the Long COVID patient community
and/or to build off hypotheses published as part of
the first issue of the Patient-Generated Hypotheses
Journal.

Long COVID after reinfections

The first set of polls was a question of importance
to the Long COVID patient community. We asked
whether an initial COVID-19 infection or a
reinfection caused the onset of Long COVID
symptoms (see Figure 1). There is limited data on
reinfections and Long COVID. Bowe et al. (2022) and
Hadley et al. (2023) reviewed electronic health
records (EHRs) of patients and established that
reinfections can cause an onset of Long COVID
symptoms3,4. Bowe et al. (2022) found that “the risks
of adverse health outcomes increased as the
number of infections increased” in the acute and
subacute phase (p. 2399). However, in the study,
patients were only followed for six months after
infection. Additionally, Bowe et al. (2022) included
only patients with a positive SARS-CoV-2 test.
Patients who may have been infected, but either
were not tested or whose test showed a false
negative, were not included in the analysis. This
may have caused an underestimation of reinfection
risks.

A systematic review published by Pecoraro et al.
(2021) calculated that up to 58% of COVID patients
may initially have a false negative polymerase chain
reaction (PCR) SARS-CoV-2 test5. This means that
there are limitations to the conclusions that can be
drawn from studies which review EHRs for positive
tests. Overall, there is limited information about the
number of times people have been infected with
SARS-CoV-2 and the risks associated with those
reinfections. This informal poll collected additional
data on the topic.

We asked users on Twitter and Mastodon the
following question with results provided in-line and
in Figure 1:

Twitter poll

At which infection did you first experience Long
COVID symptoms? (n=664)

1st infection: 89.9%
2nd infection: 7.7%
3rd infection: 1.1%
4th infection or higher: 1.4%

Note: The results may not total to 100% due to
rounding.
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Mastodon poll

At which infection did you first experience Long
COVID symptoms? (n=607)

1st infection: 80.0%
2nd infection: 14.0%
3rd infection: 3.0%
4th infection or higher: 3.0%

Figure 1. Percentage of Respondents with Long COVID
Who Developed Long COVID after a 1st, 2nd, 3rd, or
4th Infection or Higher

We assumed that users who responded to these
polls self-identify as having Long COVID. 89.9% of
respondents on Twitter and 80.0% of respondents
on Mastodon reported experiencing Long COVID

after their first infection. 10.2% of Twitter
respondents and 20% of Mastodon respondents
reported experiencing Long COVID after a
reinfection. Sample sizes between the platforms
were similar with n=664 on Twitter and n=607 on
Mastodon.

Note that this data does not indicate the likelihood
of developing Long COVID after each infection.
Rather, the data demonstrates after which infection
a small sample of people in an online community
developed Long COVID. There are important
limitations to this data: for example, the poll did not
allow respondents to indicate if they developed
Long COVID after a first infection, then recovered,
then developed it again after a subsequent
infection. It is possible that those active in Long
COVID social media communities have been sick for
many months and are more likely to have
developed Long COVID from their first infection.
The poll also assumes that everyone who
responded has Long COVID, with inclusion criteria
not verified. Additionally, many people may not
realize that they have Long COVID and therefore
would be unable to respond to such a poll on social
media.

Overall, however, the results suggest that Long
COVID from reinfections does occur, and all people
are at some risk of Long COVID, even if their prior
infection(s) did not cause it. Bowe et al. (2022) and
Hadley et al. (2023) support this conclusion3,4. Bowe
et al. (2022) found that negative health outcomes
“increased in a graded fashion according to the
number of infections” (p. 2399). This has
implications for both COVID mitigation policy and
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research. Transmissibility of SARS-CoV-2 increases
frequently from viral mutations, and many people
have been infected multiple times. Therefore, it is
more important than ever to mitigate transmission
and research the effects of multiple infections on
mortality and long-term health outcomes, including
Long COVID.

Eye floaters

The second set of polls we conducted was in
response to Matt Mazewski’s hypothesis, which is
included in this publication. The polls ask about the
presence of new eye floaters (myodesopsias) in
patients with Long COVID and ME/CFS. Because the
poll refers to this condition by the name “eye
floaters,” for consistency, this article will continue to
use that language. As Mazewski hypothesizes, in
both Long COVID and ME/CFS, inflammatory
triggers may cause collagen degradation that leads
to the presence of eye floaters6.

We asked users on Twitter and Mastodon the
following questions with results provided in-line.
Twitter results are also shown in Figure 2:

Twitter poll

If you have Long COVID, did you notice new eye
floaters (spots in your vision that may look to you
like black or gray specks, strings, or cobwebs) as
one of its symptoms? (n=544 subtracting “see
results”)

Yes: 37.1%
No: 49.5%

Maybe: 13.5%

Note: The results may not total to 100% due to
rounding.

If you have ME/CFS, did you notice new eye floaters
(spots in your vision that may look to you like black
or gray specks, strings, or cobwebs) as one of its
symptoms? (n=281, subtracting “see results”)

Yes: 38.5%
No: 45.2%
Maybe: 16.3%

Mastodon poll

If you have Long COVID and/or ME/CFS, did you
notice new eye floaters (spots in your vision that
may look to you like black or gray specks, strings, or
cobwebs) as one of your symptoms? (n=76,
subtracting “see results”)

Yes: 42.9%
No: 44.4%
Maybe: 12.7%

Note: Mastodon results not shown in Figure 2 due to
small sample size.

Patient-Generated Hypotheses Journal | Issue 1, May 2023
patientledresearch.com/projects/patient-generated-research-hypotheses

52

https://patientresearchcovid19.com/projects/patient-generated-research-hypotheses/


Figure 2. Existence of New Eye Floaters among Twitter
respondents with Long COVID and ME/CFS

More than half of Twitter respondents with Long
COVID or ME/CFS answered “Yes” or “Maybe” that
they noticed new eye floaters as a symptom on the
Twitter polls.

On Mastodon, where there is limited functionality
when posting a thread with multiple polls, ME/CFS
and Long COVID were grouped together in order to
minimize confusion and obtain a larger sample size.
Despite this, the sample size (n=76) was too small to
include in our graph or analysis. On Twitter, the
sample size was larger for the Long COVID question
than the ME/CFS question: n=544 (Long COVID) and
n=281(ME/CFS).

There are limitations to this informal poll. Given
that a relatively small number of people on social
media responded, it is not a representative sample
of the larger Long COVID or ME/CFS populations. It
is also not intended to provide incidence or
prevalence data. Further, those who experienced

eye floaters may have been more likely to answer
the question, which may have skewed the data. The
poll also assumes that everyone who responded
has Long COVID or ME/CFS, but inclusion criteria
were not verified. Despite these limitations, the
response still indicates that many in the Long COVID
and ME/CFS population do experience new eye
floaters, and this could be an important topic for
future research that is currently overlooked. As
Mazewski discusses in his hypothesis, it is also
possible that having eye floaters is a risk factor for
Long COVID and ME/CFS.

Conclusion
Informal social media polls, while limited in many
ways, are important for exploring health-related
phenomena that patient groups may notice more
readily than the general public. Creating these polls
and disseminating results may allow patients and
researchers to pursue areas of particular
importance sooner than they otherwise would
have. This benefits both patients and the larger
medical community.

The role of reinfections in Long COVID is of great
importance to the Long COVID community as well
as to the public at large. The poll results suggest
that while most people who are active in the Long
COVID communities on Twitter and Mastodon
experienced Long COVID symptoms at their first
infection, reinfections did cause an onset of Long
COVID symptoms for a significant number of people
(10.2-20%). Bowe et al. (2022) established that
multiple infections with SARS-CoV-2 increase the
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risk for adverse health outcomes, including Long
COVID3. There is a need for widespread public
health warnings about the risks of COVID
reinfection, not only in regard to mortality, but also
to Long COVID.

In our second set of polls, more than half of poll
respondents with Long COVID or ME/CFS answered
“Yes” or “Maybe” that they experienced new eye
floaters as a symptom, indicating that this is
perhaps an avenue worthy of future research,
despite the limitations of polls discussed previously.
The topic serves as one example of an area of study
where patients are, perhaps, more aware of a
health phenomenon than many scientists or
researchers may be. Continuing to develop
hypotheses, testing them informally via social

media polls, and then disseminating the results to a
larger audience is important for all patient
communities, but especially for the patient
communities of Long COVID and ME/CFS. These
conditions are chronically underfunded and still not
well-known among the medical community, despite
the fact that Long COVID and ME/CFS affect tens of
millions of people. Informal social media polls and
wider dissemination of their results may be one way
to move the needle toward more public awareness,
research, and funding for Long COVID and ME/CFS.
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